Kernelized Bayesian Transfer Learning
نویسندگان
چکیده
Transfer learning considers related but distinct tasks defined on heterogenous domains and tries to transfer knowledge between these tasks to improve generalization performance. It is particularly useful when we do not have sufficient amount of labeled training data in some tasks, which may be very costly, laborious, or even infeasible to obtain. Instead, learning the tasks jointly enables us to effectively increase the amount of labeled training data. In this paper, we formulate a kernelized Bayesian transfer learning framework that is a principled combination of kernel-based dimensionality reduction models with task-specific projection matrices to find a shared subspace and a coupled classification model for all of the tasks in this subspace. Our two main contributions are: (i) two novel probabilistic models for binary and multiclass classification, and (ii) very efficient variational approximation procedures for these models. We illustrate the generalization performance of our algorithms on two different applications. In computer vision experiments, our method outperforms the state-of-the-art algorithms on nine out of 12 benchmark supervised domain adaptation experiments defined on two object recognition data sets. In cancer biology experiments, we use our algorithm to predict mutation status of important cancer genes from gene expression profiles using two distinct cancer populations, namely, patient-derived primary tumor data and in-vitro-derived cancer cell line data. We show that we can increase our generalization performance on primary tumors using cell lines as an auxiliary data source.
منابع مشابه
Image alignment via kernelized feature learning
Machine learning is an application of artificial intelligence that is able to automatically learn and improve from experience without being explicitly programmed. The primary assumption for most of the machine learning algorithms is that the training set (source domain) and the test set (target domain) follow from the same probability distribution. However, in most of the real-world application...
متن کاملSparse kernel learning with LASSO and Bayesian inference algorithm
Kernelized LASSO (Least Absolute Selection and Shrinkage Operator) has been investigated in two separate recent papers [Gao, J., Antolovich, M., & Kwan, P. H. (2008). L1 LASSO and its Bayesian inference. In W. Wobcke, & M. Zhang (Eds.), Lecture notes in computer science: Vol. 5360 (pp. 318-324); Wang, G., Yeung, D. Y., & Lochovsky, F. (2007). The kernel path in kernelized LASSO. In Internationa...
متن کاملCorrigendum: Drug Response Prediction as a Link Prediction Problem
This Article contains a typographical error in the Results section under the subheading 'Method Comparison'. " In order to better understand the accuracy of our method, we compare it against the top performing approach in the DREAM Drug Sensitivity Prediction Challenge, Gonen and Margolin's kernelized Bayesian multitask learning (KBMTL) algorithm 19 ". should read: " In order to better understa...
متن کاملAlgorithms for Drug Sensitivity Prediction
Precision medicine entails the design of therapies that are matched for each individual patient. Thus, predictive modeling of drug responses for specific patients constitutes a significant challenge for personalized therapy. In this article, we consider a review of approaches that have been proposed to tackle the drug sensitivity prediction problem especially with respect to personalized cancer...
متن کاملThe Most Generative Maximum Margin Bayesian Networks
Although discriminative learning in graphical models generally improves classification results, the generative semantics of the model are compromised. In this paper, we introduce a novel approach of hybrid generativediscriminative learning for Bayesian networks. We use an SVM-type large margin formulation for discriminative training, introducing a likelihood-weighted l-norm for the SVM-norm-pen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014